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Abstract. The need to reach high
temperatures in an inertial fusion energy
(IFE) target (or a target for the study of
High Energy Density Physics, HEDP)
requires the ability to focus ion beams
down to a small spot. System models
indicate that within the accelerator, the
beam radius will be of order centimeters,
whereas at the final focal spot on the
target, a beam radius of order
millimeters is required, so radial
compression factors of order ten are
required. The IFE target gain (and hence
the overall cost of electricity) and the
HEDP target temperature are sensitive
functions of the final spot radius on
target. Because of this sensitivity,
careful attention needs to be paid to the
spot radius calculation. We review our
current understanding of the elements
that enter into a systems model (such as
emittance growth from chromatic,
geometric, and non-linear space charge
forces) for the final focus based on a
quadrupolar magnet system.

I. INTRODUCTION
The production of electric power from
inertial fusion targets driven by heavy
ion beams requires the ability to focus

ion beams onto small targets. Systems
models indicate that within the
accelerator, the beam radius will be of
order centimeters, whereas at the final
focal spot on the target beam radii of
order millimeters are required, so radial
compression factors of order ten are
required. Target gain, and hence the
overall cost of electricity is a sensitive
function of the final spot radius on
target.  In order to determine optimum
beam, accelerator, target and other
machine parameters a systems code
IBEAM [1] has been developed, which
uses algebraic relations to model many
aspects of the driver system and to
develop a self-consistent model of a
heavy ion driven inertial fusion power
plant. Because of the sensitivity of spot
radius on target gain, careful attention
needs to be paid to the part of the model
that calculates the spot radius. For use as
part of a previous systems assessment
study [2], a model was created which
estimated the contribution to the focal
spot from various physical effects in the
final focusing section of a driver. Since
the time that model was published,
numerical simulations, bench-marked by
experiments, have lead to a greater



Th.I-07

- 3 -

understanding of the processes that
affect the final spot size. One of the
major recent developments, has been a
more quantitative understanding of
neutralized ballistic transport through a
final focusing chamber.  Neutralized
ballistic focusing experiments (the
Scaled Final Focus Experiment [3],
Neutralized Transport Experiment [4]),
analytic calculations, simulations using
the hybrid-PIC code LSP, all point to the
feasibility of focusing highly neutralized
(>99%) beams. It has been found,
however, that non-linear residual electric
fields can cause emittance growth, and
this has significant consequences for an
optimized accelerator. In this paper, we
update the focusing model, based on our
most recent analytical and numerical
calculations.

II. ELEMENTS OF THE MODEL
FOR THE  FINAL SPOT RADIUS
The beam edge: Our goal is to be able
to estimate the spot radius over a wide
range of accelerator configurations.  For
that reason and because the power
requirement on target relies primarily on
a knowledge of the lowest order
moments, we confine ourselves to the
simplest "envelope" description of the
beam. The “envelope” should be
regarded as the beam edge for transport
within the accelerator, where the beam
will likely be space charge dominated.
For a uniform distribution of charge (an
appropriate representation for a space
charge dominated beam) the beam edges
are designated a, b (in the x, y directions,
respectively, transverse to the primary
beam motion). For uniform distributions,
the quantities a and b are twice the root
mean square of the average of the
respective transverse coordinates, i.e.

a=2<x
2
>

1/2
 and b=2<y

2
>

1/2
.  Since a is

not necessarily equal to b, we allow for
elliptical beams (as required by some
target models), which is a generalization
to the model of ref. [2] which considered
only circular beams. The envelope
equations remain valid for non-uniform
distributions (as long as elliptical
symmetry is maintained, and the
eccentricity of the elliptical density
contours do not vary with radius [4],
although the ellipticity may vary, with
longitudinal position z.) For non-uniform
distributions, a and b continue to
represent twice the rms averages of the
particle coordinates x and y. At the
target, the beam is expected to be
emittance dominated, and because
propagation from final focus to target

tends to rotate the (x, px) and (y, py)

phase space distribution (where px and

py are the transverse momenta), the
density distribution n(x,y) on target will
ideally be Gaussian with respect to x and

y. That is,  n(x,y) = n0 exp[-2(x
2
/a

2
 +

y
2
/b

2
)], where n0 is the density on-axis.

For this distribution, the fraction (1-

1/e
2
), i.e. approximately 86.4% , of the

beam is contained within the ellipse with
semi-axes a and b. Non-linear optics and
non-linear space charge can change this
value, but simulations indicate that
Gaussian distributions at the target can
be good approximations.

Envelope considerations: The rms
envelope equations couple a and b
through space charge:

† 

d2a
dz2 = Ka +

2Q
a + b

+
ex

2

a3 ,                 (1)

† 

d2b
dz2 = -Kb +

2Q
a + b

+
ey

2

b3  .             (2)

Here z is the longitudinal coordinate in
the lab frame, Q is the effective
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perveance, ex and ey are the
unnormalized emittances in the x and y
directions, and K = B'(z)/[Br] is the
magnetic quadrupole focusing function
where B' is the magnetic gradient and
[Br] is the particle rigidity. This
equation is valid when the beam density
distribution is elliptical (and
characterized by a single ellipticity at
each z), and when image forces and non-
linear forces can be neglected.  In
general, the emittances will vary with z
and an auxiliary equation  would be
needed to integrate eqs. (1) and (2), but
for uniform density, mono-energetic
beams the emittances are constant and
the equations can be integrated.

Consider a region over which K is
constant (e.g. in a "hard" edged quad, or
within the chamber where K is zero.
Multiplying eq. (1) by a and eq. (2) by b,
adding the result and integrating allows
the calculation of an energy-like
constant H given by:

† 

2H = ¢ a 2 + ¢ b 2 - Ka2 + Kb2 - 4Qln(a + b) -
ex

2

a2 -
ey

2

b2

                                                             (3)
Here ¢ a = da / dz  and ¢ b = db / dz .
After exit from the final focus magnet
the beam will be converging towards the
target with the following approximate
conditions:

K=0, a'=-qx, b'=-qy, a=qxd, and b=qyd,
where d is the distance between the end
of the last magnet and the focal spot, and

qx and qy are the focusing half-angles.

At the focal spot itself with radii rx = a

and ry = b, the smallest spot obtainable
will be at a waist, in which case a' = b'
=0. (If either a' or b' are finite at the
point of minimum area, we assume

nevertheless that a'<<qx and b' <<  qy).
We then find:

qx
2 +q y

2 ª
e x

2

rx
2 +

e y
2

ry
2 +4Qln

d(q x +q y)
rx + ry

È 

Î Í 
˘ 

˚ ˙ .   (4)

When ex and ey = 0, then eqs. (1) and (2)

imply a''-b''=0, a'-b'=const=-(qx-qy), and

a-b=-(qx-qy)z + a0-b0.  If there is a true

waist at the target (a'-b'=0) then =qx-qy
= 0, and by symmetry

qx
2 = qy

2 @ 2Qln
d(qx + qy)

rx + ry

È 

Î 
Í 

˘ 

˚ 
˙ .  In the other

extreme, (Q=0), then eqs. (1) and (2) are
separable with the well known
approximate solutions:

qx
2 ª

e x
2

rx
2 and qy

2 ª
e y

2

ry
2 .  We thus infer that

an approximate solution for arbitrary Q,

ex,and ey is given by:

qx
2 ª

e x
2

rx
2 + 2Q ln

d(qx + qy )
rx + ry

È 

Î 
Í 

˘ 

˚ 
˙  and

qy
2 ª

e y
2

ry
2 + 2Q ln

d(qx + qy )
rx + ry

È 

Î 
Í 

˘ 

˚ 
˙              (5)

Eq. (5) is thus only approximately true

for intermediate values of Q, ex,and ey.

However the sum of qx
2

 + qy
2 

found
from eq. (5) is consistent

 
with the more

exact relation eq. (4), so for the purposes
of this paper we adopt eq. (5) as our
generalization of the relation between
the focusing angles, the final elliptical
spot radii, the perveance and emittances
for elliptical spots, but bearing in mind
its approximate nature for intermediate
values. Also, Eq. (5) is  valid when Q,

ex,and ey are constants. When they are
not constant eq. (5) still may be
employed to approximately relate the
final spot radius to the focusing angles

qx and qy if the parameters are chosen
appropriately. Because of the steep

power of rx and ry in the emittance
terms in eq. (3), the final emittance
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should be used in eq. (5). However,
because of the logarithmic dependence
of the radius in the perveance term, an
appropriately averaged perveance
through the fusion chamber is required.

Contributions to the final emittance:
To calculate the final normalized
emittance at the target, contributions to
emittance dilution throughout the
machine must be included.  In the
systems model, an estimate of the
normalized emittance of each beam as it
leaves the injector is first obtained; to
that are added contributions from: non-
linear errors in the magnetic fields of the
focusing quadrupoles, chromatic
aberrations and geometric aberrations in
the final focus system, and the imperfect
non-linear neutralization of the beam in
the chamber.  We expect these
contributions to be uncorrelated and so
the contributions are added in
quadrature. Pointing errors are added
separately in quadrature with the beam
radius.

Injector and accelerator:  The
normalized emittance from the injector

enxi is given by

enxi = e nyi = 2 kT / mc2( )1/ 2
rinj             (6)

Here T is the temperature of the source

(about 1000
o
 C or ~0.1 eV for hot plate

sources or ~ 1 eV for plasma sources), m

is the ion mass, rinj is the source radius
(determined by using the Child-
Langmuir law to calculate current, under
the constraint of voltage breakdown
relations.) It has been found empirically
(ref. [7]) that imperfect beam optics
increases this ideal by about a factor of
two, and so in the systems code this
emittance was multiplied by two to take
account of this effect.

In the accelerator, non-linear magnetic
fields give rise to emittance growth (ref.
[8]).  Also, quadrupole strength errors
can create small mismatches of the
beam. If the energy from those
mismatches is thermalized one may
estimate the increase of emittance from
each quadrupole and the result can be
shown to have the same scaling as
calculated in ref. [8].  The contribution
to the emittance squared from each
quadrupole is:

† 

D(enxq
2 ) ª 4a2b 2Q

DBq

Bq

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

2

                     (7)

Here  DBq is the component of the error
magnetic field at the beam radius, which
varies randomly from magnet to magnet.
Contributions from all quads are
summed (again in quadrature) to obtain
an estimate of the final normalized
emittance ena at the end of the

accelerator.  Nominal values of DBq/Bq
of  0.1% are typically assumed in system
code calculations. Note that b2Q is
proportional to the line charge density,
which, in turn, is proportional to the
potential energy across the beam. By
adjusting the coefficient (DBq/Bq), the
sensitivity of spot size to emittance
growth from a variety of mechanisms
can be explored.

Longitudinal emittance growth:As
discussed in the next section, a spread in
parallel momentum will lead to an
increase in emittance as the beam passes
through the final focusing system. Just
as in the transverse case where non-
linearities give rise to transverse
emittance growth, it is expected that
voltage variations in the induction cell
pulsers will give rise to momentum
spread in the beam (ref.[9]). In this case,
the normalized longitudinal emittance is
proportional to the product of the
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momentum spread and the bunch length.
At the ith induction gap, an rms

momentum spread dpi will be introduced
as a result of the voltage error dVi, such

that dpi= (1/2)(p/V)dVi.  (Here

p=(2mqV)
1/2

 is the (non-relativistic)
momentum, and qV is the energy of an

ion after it transits the i
th

 gap.) It is
assumed that the voltage errors
ultimately are phase mixed and are not
corrected soon after generation.  Each

gap thus contributes dpi li to the
longitudinal normalized emittance where

li is the bunch length at the i
th

 gap.  The
voltage increment at each gap is

DVi=LdV/ds, where L is the distance
between gaps, and dV/ds is the average
accelerating grradient. The minimum
number of pulsers at each gap is

DVi/Vpulser, where Vpulser is the
maximum voltage standoff of each
pulser, e.g. around 10 kV for typical
thyratrons. Assuming the errors from

each pulser dVpulser add stochastically,

dVi =[(LdV/ds)Vpulser] 
1/2

(dVpulser/Vpulser).  For purposes of
obtaining estimates of momentum

spread, values of dVpulser/Vpulser of
about one percent are deemed typical of
standard present technology.
The momentum spread at the end of the

accelerator dpa is thus given by:

dpa
2 =

lI

la

dpI

Ê 

Ë 
Á ˆ 

¯ 
˜ 

2

+ (1/ la )2 dpi
2

i
Â li

2              (8)

where dpI and lI  are the momentum
spread and bunch length of the beam at
the end of the injector, respectively,
which is calculated separately from
errors  produced from the individual
gaps. Incorporating the discussion
preceding eq. (8) we find:

dpa
2

pa
2 =

1
4Va

2Dta
2 dVI

2DtI
2 +

dVpulser

Vpulser

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

i
Â Vpulser L dV

ds
Ê 
Ë 

ˆ 
¯ Dti

2
È 

Î 
Í 

˘ 

˚ 
˙ 

                                                            (9)

Here DtI, Dti, and Dta are the pulse
durations at the injector, ith gap, and

accelerator end, respectively, and dVI is
the voltage error on the injector,

estimated to typically be of order 10
-3

 of
the injector voltage.   To estimate the

momentum spread dpf at the final focus,
one may assume conservation of

longitudinal emittance, implying dpf/pf =

C dpa/pa , where C ≡ la/lf  is the

compression ratio, and pf and lf are the
ion  momentum and bunch length at the
final focus, respectively.

Chromatic aberrations in final focus:
In ref. [10], and ref. [11] theory and
simulations suggested that the
contribution to the normalized emittance
from chromatic aberrations in the final
focus magnets alone can be written in
the form

exc = acxd
dp
p

Ê 

Ë 
Á ˆ 

¯ 
qx

2
                            (10)

Here dp is the rms longitudinal
momentum deviation from the design

momentum p.  In ref. [11], acx was an
empirically derived constant found to be
approximately 6. We have derived a set
of moment equations, which treats the
fractional momentum spread 

† 

dp / p  as a
first order quantity in the equations of
motion.  The set of moment equations, in
effect, generalizes the envelope
equations through second order.  We
briefly present the derivation of the
moment equations in Appendix 1.
Integration of the equations (A6), for
particular focusing systems has found

acx and acy in the range 4-12, although
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some systems with chromatic aberrations
contributing anisotropically may have

acx as small as 2.4, for example with

acy approximately 6.  The integration

(and hence determination of acx and

acy) depends sensitively on the phase of
the matched envelope on which the
initial value of <xdp/p> is assumed to be
zero. In principle, this evolves from a
value of zero from the source, and is
thus calculable for a given design;
however for simulations of final focus
for which only the last dozen or less
lattice periods are included, the
indeterminacy of <xdp/p> leads to some

uncertainty in the values of acx and acy.
Geometric aberrations in final focus:
In ref. [12], an estimate was made of
third order quantities for a heavy ion
fusion focusing system.  The result can
be summarized in the following equation
for the increase in the spot size from
geometric aberrations

† 

Dr =
dq 3

bG(b)4 ª
6.9 d2 / lquad( )q 3

1080lquadq
3

Ï 
Ì 
Ô 

Ó Ô 
  ;  

† 

d >12.5lquad

d <12.5lquad

                                               (11)

Here d is the final focal distance, lquad is
the length of the final quadrupole
magnet, and

† 

b ≡ Bquad d /([Br]q) @1.25  d / lquad  where

the latter approximate equality assumes:
the thin lens approximation; the ratio of
the aperture radius to the maximum
radius of the beam envelope is 1.25;  and
the change in a' through the final lens is
assumed to be equal to the convergence
angle. Also, G[b] is a function defined in
ref. [12] and approximated here in eq.
(17).In ref. [12], q  represented the initial
emittance divided by the design spot
radius, which for small aberrations is
equal to the final focus convergence
angle. Eq. (11) was based on a doublet

final focus system (ref. [13]), a waist-to-
waist envelope trajectory, and space
charge was absent in the calculation.
Particle trajectories from linear fields
were used as the unperturbed orbits and
non-linearities from pseudo-octupole,

and Bz, arising from the fringe fields of
the quadrupoles and non-paraxial terms
in the equations of motion were
included.  Simulations have found that,
for four-quadrupole systems including
space charge, the spot size given by eq.
(11) overestimates the contributions of
geometric aberrations by about a factor
of3, for the parameters of the
Neutralized Transport Experiment [4].
We have not yet analytically reevaluated
the geometric aberrations in the context
of a 4 or more quadrupole final focus
system in the presence of space charge,
analytically.  We have parameterized our
uncertainty in this quantity by

introducing a factor ag, where the
emittance growth from geometric

aberrations egx is given by:

egx=1080ag lquad qx
4 

                      (12)

thus
 
giving a spot radius Dr from

geometric aberrations alone of  Dr ~

1080aglquad qx
3 

, which agrees with the
scaling of eq. (11), but where the
coefficient is numerically determined for
a particular magnet layout, nominally
assumed to be 0.32.

Emittance growth and neutralization
in the chamber:  The topic of emittance
growth and neutralization in the chamber
has been the subject of comprehensive
numerical and analytic study (refs. [15]
through [28]).  For simplicity, we have
assumed ballistic neutralized transport.
Plasma plug: Simulations have shown
that when a “plasma plug” (a region of
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ionized chamber gas in electrical contact
with the walls of the chamber) is
available after the beam leaves the final
focus magnet, the beam space charge
will draw and entrain electrons into the
beam providing nearly complete
neutralization of the beam space charge
as it propagates to the target.  However,
the neutralization is not perfect and this
process will only continue until the beam

potential is reduced to of order mev0
2
/2

(refs. [22-24]), where me is the electron
mass. This is because in the beam frame,
the electrons will have this kinetic
energy relative to the beam ions, and
they will not be trapped or entrained by
potentials that are lower than this
energy. It is straightforward to show that

the resulting beam perveance Qc0  (in
the limit of large initial beam current) is
given by:
Qc0 @a QZeffme / mi                      (13)

Here aQ is a parameter of order unity

(obtained from simulations), Zeff is the
effective charge state of the beam ions as
they traverse the chamber (and due to
stripping may not be equal to the initial

charge state), and mi is the ion mass.  At
very low ion currents, the perveance of
the beam itself is less than given by eq.
(13) and simulations (ref. [21]) show
that for initial beam perveance less than
Qc0, neutralization is ineffective, and for
initial beam perveance greater than Qc0,
the neutralized perveance approaches
Qc0, so that in general, the neutralized
plasma plug perveance is given by:

Qc ª Qc 0 1 - exp -Qb / Qc 0( )( )          (14)

Here Qb is the unneutralized beam
perveance. Although the electrons
provide overall charge neutralization, the
distribution of electrons will not match
perfectly the distribution of ions. The

space charge field of the beam is
therefore non-linear and the beam
emittance grows as a result.  Analytic
work on beams with non-uniform space
charge distributions [28] indicates that
the emittance squared grows linearly
with propagation distance according to:

† 

d(ex
2)

dz2 @
a sc

2

2
Q2

                                (15)

Here asc (corresponding to l of ref.
[28]), is a parameter that depends on the
distribution of charge (of order 1/2 for a
variety of non-uniform charge
distributions), and Q is the effective
beam perveance.  For propagation
through the chamber, the contribution to
the total emittance growth from
nonlinear space charge is thus given by:

† 

esc
2 ª

a sc
2

4
Qc

2d2 + e0
2
                          (16)

Volumetric plasma neutralization:
When the target is heated by a “foot”
pulse, X-rays will be emitted and can
photoionize the chamber gas in the
vicinity of the target. This will provide
additional electrons to neutralize the
beam, which can be supplied
continuously along the ion beam path.
Since this neutralization method does
not require the electrons to become
entrained with the ions, much higher
space charge neutralization fractions
than are given by eq. (13) and (14) can
be obtained.  In fact, the residual space
charge potential may be regarded as
negligible compared with the self-
focusing effect of the residual current.
In ref. [25], a theory of the residual net
current of a beam propagating through a
plasma has been obtained.  It is based on
finding solutions of the equations of
motion of an electron fluid and
Maxwell's equations. It was shown that
Maxwell's equations and the equations
of motion of the electrons fluid have a
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conservation law for the generalized
vorticity W where W is defined as:
W ≡ — ¥ pe - eB  .                            (17)

here pe is the electron fluid momentum
and B is the self-magnetic field of the
electron  fluid and beam.  In the limit of
a long beam, where steady conditions
arise, Ampere’s law implies — ¥ B = m0 J
so that — ¥ — ¥ pe( ) = m0eJ .  For a
cylindrical symmetrical beam, Stokes
theorem implies 2pr(— ¥ pe)z = m0eI r( ) ,
where I(r) is the longitudinal current
within radius r.  The total net current
having a radial extent the radius of the
beam rb is thus given by:

Inet =
2p
m0e

r — ¥ pe( )z[ ]r =rb
@ a m

2ppe

m 0e
rb

2rs

Ê 

Ë 
Á ˆ 

¯ 
˜ 

                                                         (18)
The final approximate equality in eq.
(18) assumes the scale length for the

change in pe from center to beam edge is

of order rs, and a coefficient am of order
unity is introduced to further reflect that

it is an approximation. [rs is
approximately the minimum of the “skin

depth” dp = c/(e
2
np/e0me)

1/2 
and the

beam radius rb.] At lowest order there is
charge neutralization ( Zbnb + np @ ne )

(where nb, ne, and np are the beam,
electron, and plasma iondensities
respectively) and current neutralization
(qnbvb @ neve ), so to lowest order
ve @ vb(Zbnb /(np + Znb )  . This reduces to

the limits  ve @ vb(Znb / np)  (if nb << np)

or ve @ vb   (if nb >> np).
The net current is thus approximately
given by:
Inet @ Zbnb / Zbnb + np( )[ ](rb / rs )2pe0gmevbc

2 / e
                                                          (19)
The contribution to the perveance from

the net current Qm is thus:

Qm =
-qeInet

2pe0 mic
3bb

=
-am

1 + fp

qme

mi

rb

2rs

Ê 

Ë 
Á ˆ 

¯ 
˜ 

                                                           (20)
Here fp ≡ np / Zbnb( ) . Note that the

perveance is negative, resulting in a net
focusing of the beam, but is less than
(but can approach the order of assuming

asc=am, rb <~ rs and fp>~1) the
defocusing perveance from space charge
in the case of a plasma plug (where
electrons are entrained into the beam
over a finite distance, in contrast to the
present assumption of nearly unlimited
electrons allowed to be dragged
transversely into the beam over the
entire length of propagation of the
beam). (See ref. [25] for a complete and
more rigorous derivation of eq. (20). )
This model may be appropriate for the
steady state portion of the main pulse,
for which a “foot” pulse has heated the
target and preionized the plasma in the
vicinity of the target, and a plasma
“plug” has provided a plasma near the
entrance of the chamber.  Thus, eq. (20)
may be used to estimate the final
perveance in eq. (5), for the main pulse
of the target.  Note that the scaling for
volumetric plasmas has been found to be
quite different than plasma plugs (ref.
[27]).  In ref. [27] it is shown that the
effective perveance is quite independent
of initial beam perveance (in contrast to
eq. (14)) and that the neutralization is
most dependent on whether the quantity
wp Dt is << or > >1, the latter condition,
required for validity of eq. (20). Here wp

is the electron plasma frequency and Dt
is the ion beam pulse duration.
For determining emittance growth in the
chamber, it is still appropriate to use eqs.
(14) and (16), since the "plasma plug"
perveance will determine the emittance
growth for a large fraction of the
chamber.
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In applying these equations, one should
bear in mind that these are approximate
relations, intended to obtain the correct
scaling over variations in accelerator or
beam parameters.  At this point of our
understanding, detailed simulations are
still needed to accurately predict the spot
radius for a given set of beam and
plasma parameters.
III. SUMMARY OF MODEL
For an approximate determination of the
semi major axes of the final elliptical
spot in a systems code (such as IBEAM),
a knowledge of the beam emittance and
fractional momentum spread on entrance
to the final focus section, perveance
while propagating through the chamber,
final convergence angle q, and final
focal distance d, are needed. The final
emittance may be calculated by adding
in quadrature estimates of the emittance
from the various sources:

† 

ex
2 = exa

2 + acx
2 d2 dp

p
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

qx
4 +1.16 ¥106ag

2lquad
2 qx

8 + a sc
2Qc

2d2

and

† 

ey
2 = eya

2 + acy
2 d2 dp

p
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

qy
4 +1.16 ¥106ag

2lquad
2 qy

8 + a sc
2Qc

2d2

                                                           (21)
The approximate solutions to the
envelope equations (eq. 5) can then be
used to estimate the elliptical spot radii.

Example: 4.4. GeV, 1.1 kA Bismuth
beam:  To demonstrate the magnitude of
these various contributions to the focal
spot we take as a “typical” example a
beam from a driver with ion species
Bismuth (209 amu), a single beam
current of 1.9 kA, and ion energy 4.0
GeV. (These parameters are similar to
those for a main pulse of the "Robust
Point Design" of ref. [30]).  The 1.9 kA
is a result of a factor of seventeen
increase in current in the drift
compression section.  For a source with
radius 5 cm and temperature 1.0 eV the

normalized emittance of such a beam
would be 0.23 mm-mrad, which,
allowing for optics imperfections, may
be ~0.46 mm-mrad at the end of a 15
cm, 600 kV injector diode. The current
of such a beam would be 0.6 A, through
the end of a 2 MV (b= .00453) injector.

Accelerating, in a magnetic quadrupole
lattice from 2 MeV to 4 GeV, the line
charge density increases by about a

factor of 2.5, so the quantity ~ 4 b2 Qa
2

= 2qla
2
/(pe0mc

2
) increases by this

amount also. For a 2 cm beam, at 0.44

mC/m, and 0.1% DBq/Bq the normalized
emittance growth per quadrupole would

be 8 x 10
-3

 mm-mrad. Taking into
consideration dlnl/dlnV= 0.12, with an
accelerator with ~675 quads, the
normalized emittance has increased by
only 0.33 mm-mrad, which gives a
combined emittance from injector and
quads to be 0.57 mm-mrad. This is
somewhat ideal, but sets goals for what
is possible.  Similarly, the fractional
parallel momentum spread can be
estimated from eq. (9). For an initial
pulse of 30 ms that is compressed to 170
ns in the accelerator and then down to 10
ns at the final focus, using dlnDt/dlnV = -

0.62, we find a contribution to dp/pf of 6

x 10
-4

, from errors in the induction gaps.

For an injector voltage error of 10
-3

, we

find a contribution to dp/pf of 4.5 x 10
-4

,

so that the predicted total dp/pf is 7.5 x

10
-4

.
With this fractional momentum spread, a
final focus distance of 6 m, a final

focusing angle q of 10 mrad, and acx of

4, then encx is 0.35 mm-mrad. With

these parameters, and ag = 0.32, a 1.6 m
final magnet, then eq. (18) (emittance
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from geometric aberrations) suggests

that eng = 2.0 mm-mrad.  (Note that in
calculating chromatic and particularly
geometric aberrations, a magnet layout is
generally needed. For ref. [30] the layout
involved a number of constraints based
on spot size, magnet construction
difficulty, magnet replacement rate
(minimization of magnet activation), and
thresholds for angular array extent
(dictated by target considerations) and
maximum tolerable beam ellipticity (to
avoid additional emittance growth).)
Finally, while propagating in the
chamber, for this example, from eq. (19)

and (20), a final perveance of 5.2 x 10
-6

,

could be reached, if aQZeff=2, and a
“plasma plug” is the source of
neutralization.  This would lead to a

normalized emittance contribution ensc =

3.1 mm-mrad (if asc =0.5).  The sum of
all normalized emittances is 3.7 mm-
mrad, in this example, which, when
included with the perveance term in eq.
(5), yields a final spot size of rx of 2.2
mm. If photoionization of chamber gas
by the heated target, then the plasma

density may be as high as 3.5 x 10
13

 cm
-

3
, and the beam density may be as high

as 7.1 x 10
12 

cm
-3

, so that fp may be of

order unity and rb/2rs may also be of
order unity, so that the final perveance

may be ~ -5 x 10
-6

.  If the emittance
growth is assumed to be the same (due to
the same conditions as occur in the
plasma plug throughout most of the
chamber, but that the final perveance
determines the contribution to the space
charge term in eq. (5)) then the final spot
radius would be 1.6 mm.  Both results
would meet the target requirements.
This example illustrates the most recent
realization that neutralization in the

chamber (and the associated non-linear
electric fields) may be the dominant
source of beam emittance throughout the
entire system. When the equilibrium
perveance is larger than the bare beam
perveance, then the final perveance and
emittance growth (and hence spot size)
is largely independent of beam
parameters. However, for small enough
beams neutralization (and associated
emittance growth) may not be significant
and the other terms in eq. (27) may be
the largest contributors.
IV. IMPROVEMENTS TO THE
MODEL
Corrections:  Corrections of beam
aberrations using non-linear optics have
been suggested by several authors and
have not been included in the focal spot
model. These include corrections to
geometric aberrations using octupoles
[32], and corrections to chromatic
aberrations (using combinations of
sextupoles/dipoles) [33]. Time-
dependent focusing has also been
suggested to correct chromatic
aberrations  (refs. [31], [34], and [35]).
This latter idea is that at the beginning of
the drift compression, there is a strong
correlation between longitudinal position
and velocity. One could then, in
principle, give each velocity class
upstream (before drift compression) a
time-dependent variation in the
quadrupole field strength such that when
that velocity class passes through the
final focus optics, each velocity class
will focus to the correct spot, thus
minimizing chromatic aberrations [31].
Two possible problems are  1) the
correct quadrupole variations upstream
to optimize the focal spot may cause the
beam to be mismatched, and 2) space
charge may cause various velocity
classes to be mixed at the final focus so
the correction may not be so effective,
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(but there could still be some benefit).
Multiple corrections might also be made
during the drift compression. Correcting
closer to final focus reduces the
precision needed, as there are fewer
betatron periods between the correction
point and the final focus, but the
correlation between velocity and
longitudinal position is going down, so
the corrections may become less
effective the closer the beam is to final
focus. Also, as the pulse duration
decreases towards 10 ns, the
technological challenges may increase.
The efficacy of these various correction
schemes has yet to be determined.
Assuming that they are successful, their
impact on the overall configuration of an
optimized accelerator and on the cost of
electricity can be determined by setting

acx, acy, ag to zero or to some small
value.
Emittance growth model: In addition to
voltage errors contributing to the
longitudinal emittance, simulations show
that a transverse/longitudinal instability
will grow until the longitudinal
temperature is roughly a third to half of
the transverse temperature.  For an initial
transverse temperature kT of 2 eV, an

injection voltage VI of 2 MV, the
corresponding dp/p ~

(kT/[4qVI])
1/2~5x10-4, so it is apparent

that injector voltage waveform errors are
initially somewhat more important than
thermalization of transverse temperature,
but this should be tracked throughout the
accelerator. Another source of
longitudinal emittance growth is timing
jitter from the confining (“ear”)
waveform pulsers.  This will be a source
of space charge waves that can
propagate to the interior of the beam.
Even if the waves do not thermalize they
will contribute to chromatic aberrations

to the focal spot if not corrected. A
simple model to account for jitter could
be incorporated into the emittance
growth model.

V. CONCLUSION
We have constructed a source-to-target
model of the emittance evolution of a
heavy ion beam. We have used the
envelope equations to estimate the semi-
major axes of the beam spot radius on
the target including the combined effects
of: emittance contributions from the
injector temperature, quadrupole
focusing errors in the accelerator,
chromatic and geometric effects in final
focus, non-linear and incomplete
neutralization in the chamber.  The
chromatic effects are determined from
an estimate of longitudinal velocity
spread arising from injector and
induction gap voltage errors through the
accelerator.  We have estimated the size
of the various effects for one example
set of parameters, and have found that
the contribution from non-linear space
charge effects in the chamber can be the
dominant source of emittance growth,
and is insensitive to beam parameters.
Further refinement of these estimates,
using PIC codes for benchmarking is in
progress.
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Appendix I.  Moment equations for
chromatic aberrations

We start with the equation of motion for
a beam ion in a quadrupolar external
field and include the effects of space
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charge distributed in an elliptical
distribution. The x-component of the
equation of motion is :
dpx
dt

= q(Ex + vz By - vyBz )                 (A1)

Here Ex is the x component of the space

charge field of the beam, and By and Bz
are y and z components of the magnetic
field of the quadrupole. Expanding
through second order in x’, y’, kb0x,
kb0y, dp/p  yields:

¢ ¢ x +
1

gvz 0

d
dz

(gvz )
Ê 

Ë 
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ˆ 

¯ 
˜ ¢ x @

q ¢ B 
gmvz0

x 1-
dp
p
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ˆ 

¯ 
˜ +

ql
4pe0mvz0

2

(x - x )(1-
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(Dx 2 + [Dx 2 Dy2]1/ 2 )

                                                          (A2)

This equation (when d(gvz)/dz=0) can be
written:

† 

¢ ¢ x @ Kxx x + Kxx1xdp / p.                  (A3)
Similarly, the y-equation of motion can
be written

† 

¢ ¢ y @ Kyy y + Kyy1ydp / p.                     (A4)
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                                                         (A5)
Here, ¢ B = magnetic gradient, Br[ ] = ion
rigidity = p/q; Q = perveance
=ql /(2pe0g 0

3mvz0
2 ) .

Let d≡dp/p.Noticing that
1

1 + d
= 1- d + d2 + ...  and

1
1 - d

= 1+ d + d2 + ...  so that

1
1 - d

-
1

1+ d
= 2d + 2d 3 + ...  and also

d
1 + d

= 1-
1

1+ d

We may perform averages over the
distribution function and obtain the set
of moment equations:
d
ds
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                                                          (A6)
The equations for y are identical with the
substitution y -> x , in  all variables and
subscripts.  Note, that the error terms in
eq. (A6) are two orders of d higher than
the effective order of the term in
brackets and are thus dropped. In
practice, this limits the integration
distance over which the equations may
be used, but over a short number of
lattice periods as in a final focus system,
the system of equations is quite accurate.
When candidate final focus systems are
evaluated we find that the scaling
e µ Dp / p  is satisfied, and when the

factors qx,qy, and d are included in the
normalization of the relation, that the

factors acx and acy depend on the
particular final focus system (and on the
initial phase of the matched period for
which the value of <xd>=0 is assumed),
but are in the range 4-12.
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Table 1:  Summary of constants in emittance growth model:

Quantity Nominal
Value

Comments

acx, acy
4 normalized emittance growth from

chromatic aberrations; dependent
on final focus magnet layout, and
initial correlation of x and dp/p

ag
0.32 normalized emittance growth from

geometric aberrations; dependent
on final focus magnet layout

aQ
2 Normalization constant in final

perveance for "plasma plug"
neutralization methods

am
1 Normalization in final perveance

for “zero vorticity” model

asc
0.5 normalization in emittance growth

rate due to space charge non-
linearity;  depends on distribution
of space charge

Table 1: Summary of dimensionless parameters of order unity used in calculating the
final ion beam emittance on the spot. Generally, simulations are required to determine
each a.


